Platform for rapid nanobody discovery in vitro

نویسندگان

  • Conor McMahon
  • Alexander S. Baier
  • Sanduo Zheng
  • Roberta Pascolutti
  • Janice X. Ong
  • Sarah C. Erlandson
  • Daniel Hilger
  • Aaron M. Ring
  • Aashish Manglik
  • Andrew C. Kruse
چکیده

Camelid single-domain antibody fragments (“nanobodies”) provide the remarkable specificity of antibodies within a single immunoglobulin VHH domain. This unique feature enables applications ranging from their use as biochemical tools to therapeutic agents. Virtually all nanobodies reported to date have been obtained by animal immunization, a bottleneck restricting many applications of this technology. To solve this problem, we developed a fully in vitro platform for nanobody discovery based on yeast surface display of a synthetic nanobody scaffold. This platform provides a facile and cost-effective method for rapidly isolating nanobodies targeting a diverse range of antigens. We provide a blueprint for identifying nanobodies starting from both purified and non-purified antigens, and in addition, we demonstrate application of the platform to discover rare conformationally-selective nanobodies to a lipid flippase and a G protein-coupled receptor. To facilitate broad deployment of this platform, we have made the library and all associated protocols publicly available. Introduction Antibodies have had a transformative impact on science and medicine due to their exceptional specificity and biochemical versatility, enabling applications in almost every aspect of biomedical inquiry. Conventional antibodies are composed of two heavy chains and two light chains. Each chain contributes to antigen binding specificity through a variable domain, termed VH and VL for the heavy and light chain, respectively. A key exception to this general architecture is found in camelids (llamas, alpacas, and their relatives), which possess a parallel antibody repertoire composed solely of heavy chains1,2. Such antibodies bind to their target antigens through a single variable domain, termed VHH, which contains the entire antigen-binding surface. Unlike the antigen binding fragments of conventional antibodies (Fabs), isolated VHH domains (also called “nanobodies”) can be readily expressed in bacteria as the product of a single gene, and in many cases these fragments can even fold and retain antigen specificity in the reducing environment of the cytosol. Owing to their versatility, nanobodies have found applications in protein biochemistry and structural biology, cell biology, and as potential diagnostic and therapeutic agents2-6. . CC-BY-NC 4.0 International license peer-reviewed) is the author/funder. It is made available under a The copyright holder for this preprint (which was not . http://dx.doi.org/10.1101/151043 doi: bioRxiv preprint first posted online Jun. 16, 2017;

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In vitro nanobody discovery for integral membrane protein targets

Nanobodies (Nbs) or single-domain antibodies are among the smallest and most stable binder scaffolds known. In vitro display is a powerful antibody discovery technique used worldwide. We describe the first adaptation of in vitro mRNA/cDNA display for the rapid, automatable discovery of Nbs against desired targets, and use it to discover the first ever reported nanobody against the human full-le...

متن کامل

Design of a humanized anti vascular endothelial growth factor nanobody and evaluation of its in vitro function

Objective(s): Nanobodies, the single domain antigen binding fragments of heavy chain-only antibodies occurring naturally in camelid sera, are the smallest intact antigen binding entities. Their minimal size assists in reaching otherwise largely inaccessible regions of antigens. However, their camelid origin raises a possible concern of immunogenicity when used for human therapy. Humanization is...

متن کامل

Preparation and characterization of a novel nanobody against T-cell immunoglobulin and mucin-3 (TIM-3)

Objective(s): As T-cell immunoglobulin and mucin domain 3 (TIM-3) is an immune regulatory molecule; its blocking or stimulating could alter the pattern of immune response towards a desired condition. Based on the unique features of nanobodies, we aimed to construct an anti-TIM-3 nanobody as an appropriate tool for manipulating immune responses for future therapeutic purposes. Materials and Meth...

متن کامل

Antibody Discovery Ex Vivo Accelerated by the LacO/LacI Regulatory Network

Monoclonal antibodies (mAbs) can be potent and highly specific therapeutics, diagnostics and research reagents. Nonetheless, mAb discovery using current in vivo or in vitro approaches can be costly and time-consuming, with no guarantee of success. We have established a platform for rapid discovery and optimization of mAbs ex vivo. This DTLacO platform derives from a chicken B cell line that has...

متن کامل

Nanobody as a new generation of functional proteins

Nanobody (Nb) or VHH is the smallest binding domain of camelid heavy chain antibody (HcAb). Light chains of HcAb naturally removed and because of some evolutionary changes, Nbs have unique properties rather than conventional antibodies. The size of Nb is about one-tenth (0.1) of whole antibodies and this size improved some problems of four chains antibodies such as high yield of expression in p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017